101 research outputs found

    On the Design of Clean-Slate Network Control and Management Plane

    Get PDF
    We provide a design of clean-slate control and management plane for data networks using the abstraction of 4D architecture, utilizing and extending 4D’s concept of a logically centralized Decision plane that is responsible for managing network-wide resources. In this paper, a scalable protocol and a dynamically adaptable algorithm for assigning Data plane devices to a physically distributed Decision plane are investigated, that enable a network to operate with minimal configuration and human intervention while providing optimal convergence and robustness against failures. Our work is especially relevant in the context of ISPs and large geographically dispersed enterprise networks. We also provide an extensive evaluation of our algorithm using real-world and artificially generated ISP topologies along with an experimental evaluation using ns-2 simulator

    Cognitive Radio Networks: Realistic or Not?

    Full text link
    A large volume of research has been conducted in the cognitive radio (CR) area the last decade. However, the deployment of a commercial CR network is yet to emerge. A large portion of the existing literature does not build on real world scenarios, hence, neglecting various important interactions of the research with commercial telecommunication networks. For instance, a lot of attention has been paid to spectrum sensing as the front line functionality that needs to be completed in an efficient and accurate manner to enable an opportunistic CR network architecture. This is necessary to detect the existence of spectrum holes without which no other procedure can be fulfilled. However, simply sensing (cooperatively or not) the energy received from a primary transmitter cannot enable correct dynamic spectrum access. For example, the low strength of a primary transmitter's signal does not assure that there will be no interference to a nearby primary receiver. In addition, the presence of a primary transmitter's signal does not mean that CR network users cannot access the spectrum since there might not be any primary receiver in the vicinity. Despite the existing elegant and clever solutions to the DSA problem no robust, implementable scheme has emerged. In this paper, we challenge the basic premises of the proposed schemes. We further argue that addressing the technical challenges we face in deploying robust CR networks can only be achieved if we radically change the way we design their basic functionalities. In support of our argument, we present a set of real-world scenarios, inspired by realistic settings in commercial telecommunications networks, focusing on spectrum sensing as a basic and critical functionality in the deployment of CRs. We use these scenarios to show why existing DSA paradigms are not amenable to realistic deployment in complex wireless environments.Comment: Work in progres

    Agent-Based Modeling Approach for Developing Enforcement Mechanisms in Spectrum Sharing Scenarios: An Application for the 1695-1710mhz Band

    Get PDF
    As radio spectrum sharing matures, one of the main challenges becomes finding adequate governance systems and the appropriate enforcement mechanisms. Historically, these processes were assigned to a central entity (in most cases a governmental agency). Nevertheless, the literature of Common Pool Resources (CPRs) shows that other governance mechanisms are possible, which include collaboration with a private, third-party regulator or the complete absence of central institutions, as in self-enforcement solutions. These alternatives have been developed around well-known CPRs such as fisheries, forests, etc. As argued by Weiss et al, and other researchers, spectrum can indeed be considered to be a CPR. In this work, we study the two extremes of governance systems that could be applied to spectrum sharing scenarios. Initially, we study the classical centralized scheme of command and control, where governmental institutions are in charge of rule-definition and enforcement. Subsequently, we explore a government-less environment, i.e., a distributed enforcement approach. In this anarchy situation (i.e., lack of a formal government intervention as defined by Leeson), rules and enforcement mechanisms are solely the product of repeated interactions among the intervening agents. For our analysis, we have selected the spectrum sharing framework of the 1695-1710MHz band. We also use the definitions presented by Bhattarai as well as Altamimi for managing the size of the coordination and exclusion zones. In addition, we utilize Agent-Based Modelling (ABM) to analyze the applicability of these governance mechanisms. ABM simulation allows us to explore how macro phenomena can emerge from micro-level interactions of independent agents

    Agent-Based Modelling Approach for Developing Enforcement Mechanisms in Spectrum Sharing Scenarios: An application for the 1695-1710MHz band

    Get PDF
    As radio spectrum sharing matures, one of the main challenges becomes finding adequate governance systems and the appropriate enforcement mechanisms. Historically, these processes were assigned to a central entity (in most cases a governmental agency). Nevertheless, the literature of Common Pool Resources (CPRs) shows that other governance mechanisms are possible, which include collaboration with a private, thirdparty regulator or the complete absence of central institutions, as in self-enforcement solutions. These alternatives have been developed around well-known CPRs such as fisheries, forests, etc. As argued by Weiss et al [50], and other researchers, spectrum can indeed be considered to be a CPR. In this work we study the two extremes of governance systems that could be applied to spectrum sharing scenarios. Initially, we study the classical centralized scheme of command and control, where governmental institutions are in charge of rule-definition and enforcement. Subsequently, we explore a government-less environment, i.e., a distributed enforcement approach. In this anarchy situation (i.e., lack of a formal government intervention as defined by Leeson [29]), rules and enforcement mechanisms are solely the product of repeated interactions among the intervening agents. For our analysis, we have selected the spectrum sharing framework of the 1695-1710MHz band. We also use the definitions presented by Bhattarai et al. [9], [10] as well as Altamimi [3] for managing the size of the coordination and exclusion zones. In addition, we utilize Agent-Based Modelling (ABM) to analyze the applicability of these governance mechanisms. ABM simulation allows us to explore how macro phenomena can emerge from micro-level interactions of independent agents
    • …
    corecore